New York University

School of Continuing Education

Information Technologies Institute

Course Title:	Java for C++ Programmers		Course Number: X.52.9269

Instructor: Nigel Lui					Session: 1	Date: 5/21/1998

What is Java?

In one of the first papers published by Sun Microsystems that dealt with Java, the language was described in the following fashion:

Java: A simple, object-oriented, network-savvy, interpreted, robust, secure, architecture neutral, portable, high-performance, multithreaded, dynamic language.

Java Is Simple

Although much of the syntax of Java is based on the earlier object-oriented language C++, the Java language is considerably simpler than C++. Many keywords have been eliminated, there is no preprocessor, there are far fewer special cases, and the language is augmented with a much larger library of high level development tools. Features such as operator overloading have been eliminated, as have independent functions, global variables, the goto statement, structures and pointers.

One of the more notable omissions from Java is the latter, the concept of the pointer. In many other languages there is a distinction between a value and a pointer to value. Values are static, fixed-size entities. Pointers are dynamic quantities that are filled at run time. Java does use pointer, but hides this fact from the programmer. As far as the programmer is concerned, there are no pointers, although in truth this illusion is only possible because almost everything is internally a pointer. However, the elimination of this construct removes an entire class of common programming errors, making it greatly easier to construct reliable and correct programs.

Java Is Object-Oriented

Unlike C++, Java has no functions and no variables that can exist outside of class boundaries. Thus, all Java programs must be built out of objects. C++ has tried to combine object-oriented features on top of an existing, non-objected-oriented language. The unfortunate consequence of such a design is that programmers can continue working in their old, non-object-oriented fashion. By forcing all programs into an object-oriented structure, the many benefits of object-oriented design (an emphasis on encapsulation, and orientation toward reusability) are much more easily realized.

Java Is Network Savvy

From the start, Java was designed with the Internet in mind. Although it is possible to construct Java programs that do not deal with the Internet (indeed, most of the programs in this book will not), the language provides a rich set of tools for programming across a network. The Java standard library provides a plethora of classes for describing universal resource locators (URLs), for making connections between client and server computers, and for execution in controlled environments such as a World Wide Web browser.

Java Is Interpreted

Java programs are compiled into an assembly language for an imaginary machine, called the virtual machine. These assembly language instructions, called byte-codes, could be stored on any type of machine. Any machine that supported Java programs would provide a simulator, an interpreter, that would read the byte-code values and execute them. In this fashion, any type of computer could be used as a Java virtual machine.

However, interpreters have one serious disadvantage over conventional systems. They are generally much slower in execution. Recent innovations in the Java world have advanced upon this idea of interpreters, and largely eliminated this performance penalty. A just-in-time (JIT) compiler is a system that reads the machine-independent byte-code representation of a Java program, and immediately prior to execution translates the byte-code representation into actual machine instructions for the system on which the Java program is being run. Because Java programs then execute as machine instructions, they can be almost as fast as programs compiled in more conventional languages for the specific hardware platform, and still retain the portability of the virtual machine.

Java Is Robust

The Java language and associated libraries are designed to be grateful in the presence of hardware and software errors. An example of this is the extensive use of exception handling. Statements that can potentially receive an error, such as a file operation that could attempt to read from a nonexistent source, will generate an exception instead of performing an erroneous operation. The semantics of the language insist that the programmer must deal with this possibility any time a file operation is intended. Thus, programmers are forced into thinking about potential sources of error, and their programs are therefore much more robust in the presence of error-producing conditions.

Another feature that makes Java programs more robust is automatic memory management, or garbage collection. Programmers writing in languages that use manual memory management, for example C++, frequently forget to release memory resources once they are finished with them. Long-running programs therefore slowly increase their memory requirements, until they crash. The Java run-time system instead automatically detects and recovers memory that is no longer being used by the currently running program. This both simplifies the programmer’s task and makes programs more reliable.

Java Is Secure

By eliminating pointers, the Java language removes what is perhaps the most common source of programming errors, inadvertently overwriting memory locations that are being addressed by pointers with improperly set values.

But the Java language is just the first layer in a multi-level security system. Byte-codes themselves (which may or may not have been produced by a Java compiler) are examined before they are executed by the Java interpreter. This check determines that byte-codes are free of a number of common errors, for example they do not access classes incorrectly, overflow or underflow the operand stack, or use illegal data conversions.

Finally, many of the applications envisioned for Java involved programs that are stored on one computer but executed on another. Typically, the computer on which the Java program will execute is a user’s personal computer. Few users would trust Java if it were possible that program brought over a network could possibly cause damage, such as erasing a hard drive or removing a file. For this reason, the designers of Java purposely created a programming environment where programs are severely restricted in the type of operations they can perform. Because of these restrictions, users can be largely assured that when they execute a program brought over the network, their local computer is safe from tampering.

Java Is Architecture Neutral

Because Java byte-codes do not correspond to any particular machine, they work with all machines. A Java program is the same whether it runs on a PC, a Macintosh, or a UNIX system. This is a very different from conventional languages. Although C++ is a standard language, and therefore should be the same on all machines, the libraries needed to perform activities such as placing a window on a display, or responding to a button press, differ considerably from one platform to another. This is why it is very difficult to, for example, move programs designed for the PC onto a Macintosh, or vice versa. But Java hides these application-specific details under a layer of abstraction in the standard Java library. Thus, from the programmer’s point of view, all machines look the same.

Java Is Portable

Because the Java library hides architecture-specific concepts, and because byte-codes are the same regardless of the machine on which they are generated, Java programs possess an unparalleled degree of portability. Indeed, the exact same program can be compiled on one system, then executed on many different types of systems.

Java Is High-Performance

Although the initial implementations of Java byte-code interpreters exacted a heavy performance penalty, the technology of Java execution has rapidly evolved since the language was introduced. Systems such as just-in-time compilers now allow platform-independent Java programs to be executed with nearly the same run-time performance as conventional compiled languages.

Java Is Multi-Threaded

Java is one of the first languages to be designed explicitly for the possibility of multiple threads of execution running in one program. Not only is it easy to set up such multitasking, but the coordination of these parallel processes is also relatively simple.

Java Is Dynamic

Finally, because Java programs move across the Internet and execute on the user’s local computer, they permit a degree of dynamic behavior impossible in older style systems.

Java is not like C++ because …

Java is quickly recognizable to many programmers. The statements and expressions are similar to those in many languages and, in most cases, identical to those of C or C++. Although Java adds some new things, it is most distinctive for what is left out. Compare with C, Java does not have

Memory address (pointer) arithmetic

Preprocessor

The goto statement

Automatic type conversion

Global functions and variables

Type definition aliases (typedefs)

Compared with C++, Java does not have

Templates

Operation overloading

Multiple inheritance

Compiling and Executing a Simple Java Program

Install JDK on your PC.

Use an editor to create a file with your source code. You must use an editor that saves in an ASCII format, not a word processor format. On a PC, notepad works.

Type this program into a file called HelloWorld.java

1

2

3

4

5

6

7�import java.io.*;

public class HelloWorld {

 public static void main (String [] args) {

 System.out.println ("Hello World!");

 }

}��

Compile by typing:

C:\nyu\java> javac HelloWorld.java

Make sure that the program javac is in your execution path environment variable,

i.e. %JDK_HOME%\bin is contained in your PATH environment variable, where JDK_HOME is the root of your JDK installation.

Execute the Java class file by telling the Java virtual machine (JVM) the name of the class

C:\nyu\java> java HelloWorld

Make sure that the environment variable CLASSPATH contains %JDK_HOME%\lib\classes.zip;.

Variables and Data Types

Variable Types

In Java, a variable type can be one of three things:

One of the eight primitive data types

The name of a class or interface

An array

Primitive Types

byte – 8 bits, -128 to 127

short – 16 bits, -32,768 to 32,767

int – 32 bits, -2,147,483,648 to –2,147,483,647

long – 64 bits, -9223372036854775808 to -9223372036854775807

float – 32 bits, single precision

double – 64 bits, double precision

char – 16 bits, unsigned

boolean – true or false

Class Types

In addition to the eight primitive data types, variables in Java can also be declared to hold an instance of a particular class:

String lastName;

Font basicFont;

Motorcycle m;

Each of these variables can hold instances of the named class or any of its subclasses. The later is useful when you want a variable to be able to hold different instances of related classes; for example, let’s say you had a set of fruit classes – Apple, Pear, Strawberry, and so on – all of which inherited from the general class Fruit. By declaring a variable of type Fruit, that variable can then hold instances of any of the Fruit classes. Declaring a variable of type Object means that variable can hold any object.

Comments, Operators, and Strings

Comments

Java has three kinds of comments, two for regular comments in source code and one for the special documentation system javadoc.

The symbols /* and */ surround multiline comments, as in C or C++. All text between the two delimiters is ignored:

/* This is a comment.

Here’s another comment.

*/

These comments cannot be nested; that is, you cannot have a comment inside a comment.

Double-slashes (//) can be used for a single line of comment. All the text up to the end of the line is ignored:

int id = 0; // initially, user id is set to 0

The final type of comment begins with /** and ends with */. The contents of these special comments are used by the javadoc system, but are otherwise used identically to the first type of comment. javadoc is used to generate API documentation from the source code.

Expressions and Operations

Expressions are the simplest form of statement in Java that actually accomplishes something: All expressions, when evaluated, return a value (other statements don’t necessarily do so). Arithmetic and tests for equality and magnitude are common examples of expressions. Because they return a value, you can assign that result to a variable or test that value in other Java statements.

Arithmetic

Java has five operators for basic arithmetic

Table 1.1

Operator�Meaning�Example��+�Addition�3 + 4��-�Subtraction�5 – 7��*�Multiplication�5 * 5��/�Division�14 / 7��%�Modulus�20 % 7��

Each operator takes two operands, one on either side of the operator. The subtraction operator (-) can also be used to negate a single operand.

Integer division results in an integer. Because integers don’t have decimal fractions, any remainder is ignored. The expression 31 / 9, for example, results in 3 (9 goes into 31 only 3 times).

Modulus (%) gives the remainder once the operands have been evenly divided. For example, 31 % 9 results in 4 because 9 goes into 31 three times, with 4 left over.

Listing 1.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17�class ArithmeticTest {

	public static void main (String args[]) {

		short x = 6;

		int y = 4;

		float a = 12.5;

		double b = 7.0;

		

		System.out.println (“x is “ + x + “, y is = “ + y);

		System.out.println (“x + y = “ + (x + y));

		System.out.println (“x – y = “ + (x – y));

		System.out.println (“x / y = “ + (x / y));

		System.out.println (“x % y = “ + (x % y));

		

		System.out.println (“a is “ + a + “, b is “ + b);

		System.out.println (“a / b = “ + (a / b));

	}

}��

More About Assignment

Variable assignment is a form if expression; in fact, because one assignment expression results in a value, you can string them together like this:

x = y = z = 0;

In this example, all three variables now have the value 0.

Table 1.2 More Assignment operators

Expression�Meaning��x += y;�x = x + y;��x -= y;�x = x – y;��x *= y;�x = x * y;��x /= y;�x = x / y;��

Incrementing and Decrementing

As in C and C++, the ++ and –- operators are used to increment or decrement a variable’s value by 1. For example, x++ increments the value of x by 1 just as if you had used the expression x = x + 1. Similarly

x—- decrements the value of x by 1.

These increment and decrement operators can be prefixed or posfixed; that is, the ++ or –- can appear before of after the value it increments or decrements.

Take, for example, the following two expressions:

y = x++;

y = ++x;

These two expressions yield very different results because of the different between prefix and postfix. When you use postfix operators (x++ or x--), y gets the value of x before x is changed, using prefix, the value of x is assigned to y after the change has occurred. Listing 3-2 is a Java example of how all this works.

Listing 1.2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24�class PrePostFixTest {

public static void main (String args[]) {

 int x = 0;

 int y = 0;

 System.out.println("x and y are " + x + " and " + y);

 x++;

 System.out.println("x++ results in " + x);

 ++x;

 System.out.println("++x results in " + x);

 System.out.println("Resetting x back to 0.");

 x = 0;

 System.out.println("------------");

 y = x++;

 System.out.println("y = x++ (postfix) results in:");

 System.out.println("x is " + x);

 System.out.println("y is " + y);

 System.out.println("------------");

 y = ++x;

 System.out.println("y = ++x (prefix) results in:");

 System.out.println("x is " + x);

 System.out.println("y is " + y);

 System.out.println("------------");

}��

Comparisons

Java has several expressions for testing equality and magnitude. All of these expressions return a boolean value (that is, true and false).

Table 1.3

Operator�Meaning�Example��==�Equal�x == 3��!=�Not equal�x != 3��<�Less than�x < 3��>�Greater than�x > 3��<=�Less than or equal to�x <= 3��>=�Greater than or equal to�x >=3��

Logical Operators

Expressions that result in boolean values (for example, the comparison operators) can be combined by using logical operators that represent the logical combinations AND, OR, XOR, and logical NOT.

For AND combinations, use either the & or && operators. The entire expression will be true only if both expressions on either side of the operator are also true; if either expression is false, the entire expression is false. The difference between the two operators is in expression evaluation. Using &, both sides of the expression are evaluated regardless of the outcome. Using &&, if the left side of the expression is false, the entire expression is assumed to be false (the value of the right side doesn’t matter), so the expression returns false, and the right side of the expression is never evaluated.

For OR expressions, use either | or ||. OR expressions result in true if either or both of the expressions on either side is also true; if both expression operands are false, the expression is false. As with & and &&, the single | evaluates both sides of the expression regardless of the outcome; and || is short-circuited: If the left expression is true, the expression returns true and the right side is never evaluated.

In addition, there is the XOR operator ^, which returns true only if its operands are different (one true and one false, or vice versa) and false otherwise (even if both are true).

In general, only the && and || are commonly used as actual logical combinations. &, | and ^ are more commonly used for bitwise logical operations.

For NOT, use the ! operator with a single expression argument. The value of the NOT expression is the negation of the expression; if x is true, !x is false.

Table 1.4 Operator Precedence

Priority�Operator��1�. [] ()��2�++ -- ! ~ instanceof��3�new (type) expression��4�* / %��5�+ -��6�<< >> >>>��7�< > <= >=��8�== !=��9�&��10�^��11�|��12�&&��13�||��14�? :��15�= += -= *= /= %= ^=��16�&= != <<= >>= >>>=��

String Arithmetic

One special expression in Java is the use of the addition operator (+) to create and concatenate strings. In most of the examples shown in this chapter and in earlier lessons, you’ve seen lots of lines that looked something like this:

System.out.println (name + “ is a “ + color + “ beetle”);

The + operator, when used with strings and other objects, creates a single string that contains the concatenation of all its operands. If any of the operands in string concatenation is not a string, it is automatically converted to a string, making it easy to create these sorts of output lines.

Creating and Destroying Objects

When you write a Java program, you define a set of classes. Classes are templates for objects; for the most part, you merely use the class to create instances and then work with those instances.

Using new

To create a new object, you use the new operator with the name of the class you want to create an instance of, then parentheses after that. The following examples create new instances of the class String, Random, and Motorcycle, and store those new instances in variables of the appropriate types:

String str = new String ();

Random r = new Random ();

Motorcycle m = new Motorcycle ();

The parentheses are important, don’t leave them off. The parentheses can be empty (as in these examples); or the parentheses can contain arguments that determine the initial values of instance variables or other initial qualities of that object;

What new does?

When you use the new operator, the new instance of the given class is created, and memory is allocated for it. In addition (and most important), a special method defined in the given class is called to initialize the object and set up any initial values it needs. This special method is called a constructor.

Constructors are special methods that initialize a new object, set its variables, create any other objects that object needs, and generally perform any other operations the object needs to initialize itself.

Multiple constructor definitions in a class can each have a different number of type of arguments – then, when you use new, you can specify different arguments in the argument list, and the right constructor for those arguments will be called.

What happen when you’re finished with that object?

Once you’re done with an object, you reassign all the variables that might hold that object and remove it from any arrays, thereby making the object unusable. Java has a “garbage collector” that looks for unused objects and reclaims the memory that those objects are using. You don’t have to do any explicit freeing of memory; you just have to make sure you’re not still holding onto an object you want to get rid of.

Accessing and Setting Class and Instance Variables

To get to the value of an instance variable, you use an expression in what’s called dot notation. With dot notation, the reference to an instance or class variable has two parts, the object on the left side of the dot, and the variable on the right side of the dot.

For example, if you have an object assigned to the variable myObject, and that object has a variable called var, you refer to that variable’s value like this:

myObject.var;

If that var instance variable itself holds an object and that object has its own instance variable called state, you could refer to it like this:

myObject.var.state;

Changing Values

Assigning a value to that variable is equally easy – just tack an assignment operator on the right side of the expression:

myObject.var.state = true;

Listing 1.3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19�import java.awt.Point;

class TestPoint {

public static void main(String args[]) {

 Point thePoint = new Point(10,10);

 System.out.println("X is " + thePoint.x);

 System.out.println("Y is " + thePoint.y);

 System.out.println("Setting X to 5.");

 thePoint.x = 5;

 System.out.println("Setting Y to 15.");

 thePoint.y = 15;

 System.out.println("X is " + thePoint.x);

 System.out.println("Y is " + thePoint.y);

 }

}��

Class Variables

Class variables, as you’ve already learned, are variables that are defined and stored in the class itself. Their values, therefore, apply to the class and to all its instances.

With instance variables, each new instance of the class gets a new copy of the instance variables that class defines. Each instance can then change the values of those instance variables without affecting any other instances. With class variables, there’s only one copy of that variable. Every instance of the class has access to that variable, but there is only one value. Changing the value of that variable changes it for all the instances of that class.

You define class variable by including the static keyword before the variable itself. For example, take the following partial class definition:

class FamilyMember {

	static String lastName = “Johnson”;

	String name;

	Integer age;

	…

}

Instances of the class FamilyMember each have their own values for name and age. But the class variable lastName has only one value for all family members. Change lastName and all the instances of FamilyMember are affected.

FamilyMember dad = new FamilyMember ();

System.out.println (“Family’s lastName is = “ + dad.surname);

System.out.println (“Family’s lastName is = “ FamilyMember.lastName);

Calling Methods

Calling a method is similar to referring to an object’s instance variables: Method calls to objects also use dot notation. The object itself whose method you’re calling is on the left side of the dot; the name of the method and its arguments are on the right side of the dot:

myObject.methodOne (argument1, argument2, argument3);

Note that all calls to methods must have parentheses after them, even if that method takes no arguments:

myObject.methodNoArguments ();

Class Methods

Class method, like class variables, apply to the class as a whole and not to its instances. Class methods are commonly used for general utility methods that may not operate directly on an instance of that class, but fit with that class conceptually. For example, the String class contains a class method called valueOf(), which can take one of many different types of arguments (integers, booleans, other objects, and so on). The valueOf() method then returns a new instance of String containing the string value of the argument it was given. This method doesn’t operate directly on an existing instance of String, but getting a string from another object or data type is definitely a String like operation, and it make sense to define it in the String class.

String s, s2;

s = “foo”;

s2 = s.valueOf (5);

s2 = String.valueOf (5);

References To Objects

As you work with objects, one important thing going on behind the scenes is the use of references to those objects. When you assign objects to variables, or pass objects as arguments to methods, you are passing references to those objects, not the objects themselves or copies of those objects.

Listing 1.4

1

2

3

4

5

6

7

8

9

10

11

12

13

14�import java.awt.Point;

class ReferencesTest {

 public static void main (String args[]) {

 Point pt1, pt2;

 pt1 = new Point(100, 100);

 pt2 = pt1;

 pt1.x = 200;

 pt1.y = 200;

 System.out.println("Point1: " + pt1.x + ", " + pt1.y);

 System.out.println("Point2: " + pt2.x + ", " + pt2.y);

 }

}��

In the first part of this program, you declare two variables of type Point, create a new Point object to pt1, and finally, assign the value of pt1 to pt2.

Now, here’s the challenge. After changing pt1’s x and y instance variables, what will p2 look like?

As you can see, pt2’s x and y instance variables were also changed, even though you never explicitly changed them. When you assign the value of pt1 to pt2, you actually create a reference from pt2 to the same object to which pt1 refers. Change the object that pt2 refers to, and you also change the object that pt1 points to, because both are references to the same object.

If you actually do want pt1 and pt2 to point to separate objects, you should use a new Point () for both lines to create separate objects.

Comparing Objects

You learned about operators for comparing values: equals, not equals, less than, and so on. Most of these operators work only on primitive types, not on objects. If you try to use other values as operands, the Java compiler produces errors.

The exception to this rule is with the operators for equality (==) and != (not equal). These operators, when used with objects, test whether the two operands refer to exactly the same object in memory.

If you want to be able to compare instances of your class and having meaningful results? You have to implement special methods in your class, and you have to call those methods using those method names.

Listing 1.5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18�class EqualsTest {

public static void main(String args[]) {

 String str1, str2;

 str1 = "she sells sea shells by the sea shore.";

 str2 = str1;

 System.out.println("String1: " + str1);

 System.out.println("String2: " + str2);

 System.out.println("Same object? " + (str1 == str2));

 str2 = new String(str1);

 System.out.println("String1: " + str1);

 System.out.println("String2: " + str2);

 System.out.println("Same object? " + (str1 == str2));

 System.out.println("Same value? " + str1.equals(str2));

 }

}��

Determining the Class of an Object

Want to find out the class of an object? Here’s the way to do it for an object assigned to the variable obj:

String name = obj.getClass().getName();

The getClass() method is defined in the Object class, and as such is available for all objects. The result of that method is a Class object (where Class is itself a class), which has a method called getName(). getName() returns a string representing the name of the class.

Another test that might be useful to you is the instanceof operator, instanceof has two operands: an object on the left, and the name of a class on the right. The expression returns true or false based on whether the object is an instance of the named class or any of that class’s subclasses:

“foo” instanceof String // true

Point pt = new Point (10, 10);

pt instanceof String // false

Using Arrays

An array is a collection of items. Each slot in the array can hold an object or a primitive value. Arrays in Java are objects that can be treated just like other objects in the language.

Arrays can contain any type of element value (primitive types or objects), but you can’t store different types in a single array. You can have an array of integers or an array of strings or an array of arrays, but you can’t have an array that contains, for example, both strings and integers.

Declaring Array Variables

The first step in creating an array is creating a variable that will hold the array, just as you would any other variable. Array variables indicate the type of object the array will hold and the name of the array, followed by empty bracket ([]).

String difficultWords [];

Point hits [];

int temps [];

An alternate method of defining an array variable is to put the brackets after the type instead of after the variable. They are equivalent, but this latter form is often much more readable.

String [] difficultWords;

Point [] hits;

int [] temps;

Creating Array Objects

The second step is to create an array object and assign it to that variable. There are two ways to do this:

Using new or directly initializing the contents of that array.

String [] names = new String [10];

That line will creates a new array of Stirngs with 10 slots. When you create a new array object using new, you must indicate how many slots that array will hold. This line does not put actual String objects in the slots! You’ll have to do that later.

Array objects can contain primitive types such as integers or booleans, just as they can contain objects:

int [] temps = new int [10];

When you create an array object using new, all its slots are initialized of you (0 for numeric arrays, false for boolean, ‘\0’ for chacater arrays, and null for objects). You can then assign actual values or objects to the slots in that array.

Instead of using new to create the new array object, enclose the elements of the array inside braces, separated by commas:

String [] fruits = { “apple”, “banana”, “orange”, “strawberry” };

Each of the elements inside the braces must be of the same type and must be the same type as the variable that holds that array. The size of the array will be automatically created for you. This example creates an array of String objects named fruits that contains 4 elements.

Accessing Array Elements

To get a value stored within an array, use the array subscript expression ([]):

myArray [subscript];

The myArray part of this expression is a variable holding an array object, although it can be an expression that results in an array. The subscript part of the expression, inside the brackets, specifies the number of the slot within the array to access. Array subscripts start with 0. An array with 10 elements has 10 array slots accessed using subscripts 0 to 9.

For example, the following lines result in an error:

String [] str = new String [10];

arr[10] = “eggplant”;

You can test for the length of the array in your programs using the length instance variable – its available for all array objects, regardless of type:

int len = fruits.length; // returns 4

Changing Array Elements

To assign an element value to a particular array slot, merely put an assignment statement after the array access expression:

myArray [1] = 15;

sentence [0] = “The”;

sentence [10] = sentence [0];

An important thing to note is that an array of objects in Java is an array of references to those objects. When you assign a value to a slot in an array, you’re creating a reference to that object, just as you do for a plain variable. When you move values around inside arrays (as in that last line), you just reassign the reference; you don’t copy the value from one slot to another. Arrays of primitive types such as int and float do copy the values from one slot to another.

Listing 1.6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30�class ArrayTest {

 String[] firstNames = { "Dennis", "Grace", "Bjarne", "James" };

 String[] lastNames = new String[firstNames.length];

 void printNames() {

		int i = 0;

		System.out.println(firstNames[i] + " " + lastNames[i]);	

		i++;

		System.out.println(firstNames[i] + " " + lastNames[i]);

		i++;	

		System.out.println(firstNames[i] + " " + lastNames[i]);

		i++;	

		System.out.println(firstNames[i] + " " + lastNames[i]);

	}

	

	public static void main (String args[]) {

		ArrayTest a = new ArrayTest();

		a.printNames();

		System.out.println("----------");

		a.lastNames[0] = "Ritchie";

		a.lastNames[1] = "Hopper";

		a.lastNames[2] = "Stroustrup";

		a.lastNames[3] = "Gosling";

		

		a.printNames();

	

	}

}��

if Conditionals

The if conditional statement is used when you want to execute different bits of code based on a simple test. Here’s a simple example that prints the message “x is smaller than y” only of the value of x is less than the value of y:

if (x < y)

	System.out.println (“x is smaller than y”);

An optional else keyword provides the alternative statement to execute if the test is false:

if (x < y)

	System.out.println (“x is smaller than y”);

else

	System.out.println (“y is bigger or equal to x”);

The different between if conditionals in Java and C or C++ is that the test must return a boolean value (true or false). Unlike in C, the test cannot return an integer.

The Conditional Operator

An alternative to using the if and else keywords in a conditional statement is to use the conditional operator. The conditional operator is an expression, meaning that it returns a value. The conditional operator is most useful for very short or simple conditionals and looks like this:

test ? trueResult : falseResult;

int smaller = x < y ? x : y;

switch Conditionals

A common programming practice in any language is to test a variable against some value, and if it doesn’t match that value, to test it again against a different value, and if it doesn’t match that one to make yet another test, and so on until it matches with the right result. Using only if statements, this can become unwieldy, depending on how it’s formatted and how many different options you have to test.

Listing 1.7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26�class NumberReader {

	String convertNum(int val) {

	

		switch (val) {

			case 0: return "zero ";

			case 1: return "one ";

			case 2: return "two ";

			case 3: return "three ";

			case 4: return "four ";

			case 5: return "five ";

			case 6: return "six ";

			case 7: return "seven ";

			case 8: return "eight ";

			case 9: return "nine ";

			default: return " ";

		}

	}

	

	public static void main (String args[]) {

		NumberReader n = new NumberReader();

		

		String num = n.convertNum(4) + n.convertNum(1) + n.convertNum(5);

		System.out.println("415 converts to " + num);

	}

}��

for Loops

The for loop, as in C, repeats a statement or block of statement until a condition is matched. For loops are frequently used for simple iterations in which you repeat a block of statements a certain number of times and then stop, but you can use for loops for just about any kind of loop.

The for loop in Java looks roughly like this:

for (initialization; test; increment) {

	statements;

}

The start of the for loop has three parts:

initialization is an expression that initializes the start of the loop.

test is the test that occurs after each pass of the loop. The test must be a boolean expression or function that returns a boolean value. If the test is true, the loop executes. Once the test is false, the loop stops executing.

increment is any expression or functuon call. Commonly, increment is used to change the value of the loop index to bring the state of the loop closer to returning false and completing.

Listing 1.8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23�class NamesLoop {

 String[] firstNames = { "Dennis", "Grace", "Bjarne", "James" };

 String[] lastNames = new String[firstNames.length];

 void printNames() {

		for (int i = 0; i < firstNames.length; i++)

			System.out.println(firstNames[i] + " " + lastNames[i]);	

 }

	

 public static void main (String args[]) {

		NamesLoop a = new NamesLoop ();

		a.printNames();

		System.out.println("----------");

		a.lastNames[0] = "Ritchie";

		a.lastNames[1] = "Hopper";

		a.lastNames[2] = "Stroustrup";

		a.lastNames[3] = "Gosling";

		

		a.printNames();	

 }

}��

while Loops

The while loop is used to repeat a statement or block of statement as long as a particular condition is true. while loops look like this:

while (condition) {

	statement;

}

Listing 1.9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20�class CopyArrayWhile {

	public static void main (String args[]) {

		int[] array1 = { 5, 7, 3, 6, 0, 3, 2, 1 };

		float[] array2 = new float[array1.length];

		

	 System.out.print("array1: [");

	 for (int i = 0; i < array1.length; i++) {

	 System.out.print(array1[i] + " ");

	 }

	 System.out.println("]");

	

	 System.out.print("array2: [");

		int count = 0;

		while (count < array1.length && array1[count] != 0) {	

 			 array2[count] = (float) array1[count];

 			 System.out.print(array2[count++] + " ");

		}

	 System.out.println("]");

	}

}��

do … while Loops

The do loop is just like a while loop, except that do executes a given statement or block until the condition is false. The main different is that while loops test the condition before looping.

do {

	statement;

} while (condition);

Listing 1.10

1

2

3

4

5

6

7

8

9

10�class DoTest{

 public static void main (String args[]) {

 int x = 1;

 do {

 System.out.println("Looping, round " + x);

 x++;

 } while (x <= 10);

 }

}��

Homework #1

Download JDK 1.1.6 and documentation from http://www.javasoft.com/ and install them on your PC.

Contact your teammates and decide on a project.

Create an Array of ten integers (int) and store them into the class java.util.Vector.

Iterate through the vector in question 3 and print out the values to the System.out by using java.util.Enumeration

�PAGE �1�

