New York University

School of Continuing Education

Information Technologies Institute

Course Title:	Java for C++ Programmers		Course Number: X.52.9269

Instructor: Nigel Lui					Session: 2	Date: 5/28/1998

Object-Oriented Programming

Defining Classes

Defining classes is pretty easy, you’ve seen how to do it a bunch of times in previous session. To define a class, use the class keyword and the name of the class:

class MyClassName {

	// …

}

By default, classes inherit from the Object class. If this class is a subclass of another specific class (that is, inherits from another class), use extends to indicate the superclass of this class:

class MyClassName extends MySuperClassName {

	// …

}

Defining Instance Variables

Variables are considered instance variables if they are declared outside a method definition. Customarily, however, most instance variables are defined just after the first line of the class definition. For example, the following listing shows a simple class definition for the class Bicycle with 5 instance variables.

Listing 2.1

1

2

3

4

5

6

7�
class Bicycle {

	String bikeType;

	int chainGear;

	int rearCog;

	int currentGearFront;

	int currentGearRear;

}�
�

Defining Constants

A constant variable or constant is a variable whose value never changes. Constants are useful for defining shared values for all the methods of an object – for giving meaningful names to object-wide values that will never change. In Java, you can create constants only for instance or class variables, not for local variables.

To declare a constant, use the final keyword before the variable declaration and include an initial value for that variable:

final float pi = 3.141592;

final boolean debug = true;

final int maxsize = 40000;

Since constants represent unchanging values, they are usually defined as class variables by putting the keyword static before final.

static final float pi = 3.141592;

Class Variable

Class variables are good for communicating between different objects with the same class, or for keeping track of global states among a set of objects.

To declare a class variable, use the static keyword in the class declaration:

static int sum;

static final int maxObjects = 10;

Defining Methods

Method definitions have four basic parts:

The name of the method

A list of parameter

The type of object or primitive type the method return

The body of the method

To keep things simple, I’ve left off two optional parts of the method definition: a modifier such as public or private, and the throws keyword, which indicates the exceptions a method can throw. You’ll learn about these parts of a method definition later in the course.

The first two parts of the method definition form what’s called the method’s signature. Two methods can have the same name if their signatures have different numbers or types of parameters. This feature is called overloading, because the simple name of the method has overloaded (more than one) meaning.

Here’s what a basic method definition looks like:

returnType methodName (type1 arg1, type2 arg2, type3 arg3 …) {

	…

}

The returnType is the type of value this method returns. It can be one of the primitive types, a class name, or void if the method does not return a value at all.

The method parameter’s list is a set of variable declarations, separated by commas, inside parentheses. The parameters become local variables in the body of the method, whose values are the objects or values of primitives passed in when the method is called.

Inside the body of the method you can have statements, expressions, method calls to other objects, conditionals, loops, and so on – everything you’ve learned about in the previous lessons.

If your method has a real return type (that is, it has not been declared to return void), somewhere inside the body of the method you need to explicitly return a value. Use the return keyword to do this. Listing 4-2 shows an example of a class that defines a makeRange() method. makeRange() takes two integers – a lower bound and an upper bound – and creates an array that contains all the integers between those two boundaries (inclusive).

Listing 2.2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22�
class RangeClass {

 int[] makeRange(int lower, int upper) {

 int arr[] = new int[(upper - lower) + 1];

 for (int i = 0; i < arr.length; i++) {

 arr[i] = lower++;

 }

 return arr;

 }

 public static void main(String arg[]) {

 int theArray[];

 RangeClass theRange = new RangeClass();

 theArray = theRange.makeRange(1, 10);

 System.out.print("The array: [");

 for (int i = 0; i < theArray.length; i++) {

 System.out.print(theArray[i] + " ");

 }

 System.out.println("]");

 }

}�
�

Output of Listing 2.2:

???

The this Keyword

In the body of a method definition, you may want to refer to the current object – the object in which the method is contained in the first place – to refer to that object’s instance variables or to pass the current object as an argument to another method. To refer to the current object in these cases, you can use the this keyword. this can be used any where the current object might appear – in dot notation to refer to the object’s instance variables, as an argument to a method, as the return value for the current method, and so on. Here’s an example:

int i = this.x;

this.myMethod (this);

return this;

In many cases you may be able to omit the this keyword entirely, You can refer to both instance variable and method calls defined in the current class simply by name, the this is implicit in those references. So the first two examples could be written like this:

t = x;

myMethod (this);

Passing Arguments to Methods

When you call a method with object, not primitive type, parameters, the variables you pass into the body of the method are passed by reference, which means that whatever you do to those objects inside the method affects the original objects as well. This includes arrays and all the objects that arrays contain; when you pass an array into a method and modify its content, the original array is affected.

Listing 2.3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32�
class PassByReference {

 int onetoZero(int arg[]) {

 int count = 0;

 for (int i = 0; i < arg.length; i++) {

 if (arg[i] == 1) {

 count++;

 arg[i] = 0;

 }

 }

 return count;

 }

 public static void main (String arg[]) {

 int arr[] = { 1, 3, 4, 5, 1, 1, 7 };

 PassByReference test = new PassByReference();

 int numOnes;

 System.out.print("Values of the array: [");

 for (int i = 0; i < arr.length; i++) {

 System.out.print(arr[i] + " ");

 }

 System.out.println("]");

 numOnes = test.onetoZero(arr);

 System.out.println("Number of Ones = " + numOnes);

 System.out.print("New values of the array: [");

 for (int i = 0; i < arr.length; i++) {

 System.out.print(arr[i] + " ");

 }

 System.out.println("]");

 }

}�
�

Output of Listing 2.3:

???

Class Method

To define class methods, use the static keyword in front of the method definition, just as you would create a class variable. For example, that max class method might have a signature like this:

static int max (int arg1, int arg2) {

…

}

Java supplies “wrapper” classes for each of the primitive data types – for example, classes for Integer, Float, and Boolean. Using class methods defined in those classes, you can convert to and from objects and primitive types. For example, the parseInt() class method in the Integer class takes a string and a radix (base) and returns the value of that string as an integer:

int count = Integer.parseInt (“42”, 10);

Most methods that operate on a particular object, or that affect that object, should be defined as instance methods. Methods that provide some general utility but do not directly affect an instance of that class are better declared as class methods.

Passing Arguments to Java Programs

To pass arguments to a Java program on Windows or Solaris, append them to the command line when you run your Java program.

Listing 2.4

1

2

3

4

5

6

7�
class EchoArgs {

 public static void main(String args[]) {

 for (int i = 0; i < args.length; i++) {

 System.out.println("Argument " + i + ": " + args[i]);

 }

 }

}�
�

Input 1 For Listing 2.4:

java EchoArgs 1 2 3 jump

Output 1 For Listing 2.4:

???

Input 2 For Listing 2.4:

java EchoArgs “foo bar” two three 4

Output 2 For Listing 2.4:

???

Constructors

Constructor methods are used to initialize new objects when they’re created. Unlike regular methods, you can’t call a constructor method by calling it directly; instead, constructor methods are called by Java automatically when you create a new object. When you use new, Java does three things:

Allocates memory for the new object

Initializes the object’s instance variables, either to their initial values or to a default (0 for numbers, null for objects, false for boolean, ‘\0’ for characters)

Calls the class’ constructor method (which may be one of several methods)

If a class doesn’t have any special constructor methods defined, you’ll still end up with a new object, but you might have to set its instance variables or call other methods that the object needs to initialize itself.

By defining constructor methods in your own classes, you can set initial values of instance variables, call methods based on those variables or on other objects, or calculate initial properties of your object. You can also overload constructors, as you would regular methods, to create an object that has specific properties based on the arguments you give in the new expression.

Constructors always have the same name as the class

Constructors don’t have a return type

Listing 2.5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24�
class Person {

 String name;

 int age;

 Person(String n, int a) {

 name = n;

 age = a;

 }

 void printPerson() {

 System.out.print("Hi, my name is " + name);

 System.out.println(". I am " + age + " years old.");

 }

 public static void main (String args[]) {

 Person p;

 p = new Person("Laura", 20);

 p.printPerson();

 System.out.println("--------");

 p = new Person("Tommy", 3);

 p.printPerson();

 System.out.println("--------");

 }

}�
�

Output of Listing 2.5:

???

Creating Methods That Override Existing Methods

When you call an object’s method, Java looks for that method definition in the class of that object, and if it doesn’t find a match with the right signature, it passes the method call up the class hierarchy until a definition is found. Method inheritance means that you can use methods in subclasses without having to duplicate the code.

However, there may be times when you want an object to respond to the same methods but have different behavior when that method is called. In this case, you can override that method. Overriding a method involves defining a method in a subclass that has the same signature as a method in a superclass. Then, when that method is called, the method in the subclass is found and executed instead of the one in the superclass.

To override a method, all you have to do is create a method in your subclass that have the same signature as a method defined by one of your class’ superclasses. Because Java executes the first method definition it finds that matches the signature, this effectively “hides” the original method definition.

Listing 2.6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19�
class PrintClass {

 int x = 0;

 int y = 1;

 void printMe() {

 System.out.println("x is " + x + ", y is " + y);

 System.out.println("I am an instance of the class " +

 this.getClass().getName());

 }

}

class PrintSubClass extends PrintClass {

 int z = 3;

 public static void main(String args[]) {

 PrintSubClass obj = new PrintSubClass();

 obj.printMe();

 }

}�
�

Output of Listing 2.6:

???

Listing 2.7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15�
class PrintSubClass2 extends PrintClass {

 int z = 3;

 void printMe() {

 System.out.println("x is " + x + ", y is " + y +

 ", z is " + z);

 System.out.println("I am an instance of the class " +

 this.getClass().getName());

 }

 public static void main(String args[]) {

 PrintSubClass2 obj = new PrintSubClass2();

 obj.printMe();

 }

}�
�

Output of Listing 2.7:

???

Calling the Original Method

Sometimes you may just want to add behavior to the original definition rather than erase it altogether. This is particularly useful where you end up duplicating behavior in both the original method and the method that overrides it; by being able to call the original method in the body of the overridden method, you can add only what you need.

To call the original method from inside a method definition, use the super keyword to pass the method call up the hierarchy:

void printMe () {

	super.printMe ();

	System.out.println (“z is = “ + z);

}

Overriding Constructor

Because constructors have the same name as the current class, you cannot technically override a superclass’ constructors. If you want a constructor in a subclass with the same number and type of arguments as in the superclass, you’ll have to define that constructor in your own class.

However, when you create your constructors you will almost always want to call your superclass’ constructors to make sure that the inherited parts of your object get initialized the way your superclass intends them to be. By explicitly calling your superclass’ constructors in this way you can create constructors that effectively override or overload your superclass’ constructors.

To call a regular method in a superclass, you use the form super.methodName(arguments). Because with constructors you don’t have a method name to call, however, you have to use a different form:

super (arg1, arg2, …);

Listing 2.8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17�
import java.awt.Point;

class NamedPoint extends Point {

 String name;

 NamedPoint(int x, int y, String name) {

 super(x,y);

 this.name = name;

 }

 public static void main (String arg[]) {

 NamedPoint np = new NamedPoint(5, 5, "SmallPoint");

 System.out.println("x is " + np.x);

 System.out.println("y is " + np.y);

 System.out.println("Name is " + np.name);

 }

}�
�

Output of Listing 2.8

???

If you do not explicitly call a superclass constructor, then the no-arg constructor of the superclass is called for you. If the superclass doesn’t have a no-arg constructor (either an implicit one because you didn’t provide any constructors, or an explicit no-arg constructor that you did provide) then you get a compilation error along the lines of “no constructor found in superclass.”

Finalizer Methods

Finalizer methods are almost the opposite of constructor methods; whereas a constructor method is used to initialize an object, finalizer methods are called just before the object is garbage-collected and it’s memory reclaimed.

The finalizer method is named simply finalize(). The Object class defines a default finalizer method, which does nothing. To create a finalizer method for your own classes, override the finalize() method using this signature:

protected void finalize () throws Throwable {

	super.finalize ();

}

You can always call the finalize() method yourself at any time; it’s just a plain method like any other. However, calling finalize() does not trigger an object to be garbage-collected.

Forcing the Method: Abstract and Final

When the keyword final appears at the start of a class declaration, it means “No one can extend this class”. Similarly, an individual method can be made final preventing it being overridden when its class is inherited.

When the keyword abstract appears at the start of a class declaration, it means that zero or more of its methods are abstract. An abstract method has no body, its purpose it to force a subclass to override it and provide a concrete implementation of it.

Data Field Modifiers

The fields in a class body can be variables, or methods. The field can similarly start with a modifier that say how visible it is, and qualifies it in some other way. These are the modifiers that you can apply to a field that is data.

Table 2.1

Modifiers to data field�
Explanation�
�
public

(blank)

protected

private

static

final

transient

volatile�
Field is visible everywhere (class must be public too)

Field is only visible in this package

Field is only visible in this package and the field is visible in subclasses in other packages extended from this class, too. So protected is actually less protected than the default!

Field is only visible in this class

(above are keywords that modify visibility)

(below are keywords that modify the way the field is used)

one per class, not one for each object

cannot change value (is a constant)

a hint used in object serialization

this data may be written to by several threads of control, so the run-time system has to take care to always get the freshest value when reading it.�
�

Method Field Modifiers

There are modifiers that you can apply to a field that is a method.

Table 2.2

Modifiers to a method�
Explanation�
�
public

(blank)

protected

private

final

static

abstract

native

synchronized�
Method is visible everywhere (class must be public too)

Method is only visible in this package

Method is only visible in this package and the method is visible in subclasses in other packages extended from this class, too. So protected is actually less protected than the default!

Method is only visible in this class

(above are keywords that modify visibility)

(below are keywords that modify the way the method is used)

method cannot be overriden

one per class, not one for each object

method must be overridden to be useful

method not written in Java

only one thread may execute in the method for a given object at a time. Entry to the method is protected by a monitor lock around it.�
�

Interface Declarations

An interface is a skeleton of a class, showing the methods the class will have when someone implements it. An interface may look like this:

public interface FlyingMachine {

	public int navigate (Point from, Point to);

	public void land ();

	public void takeOff (double fuel);

}

The declarations in an interface are always public, even if you don’t label them so. You can declare data in an interface but only constant data. Even if you don’t label it final, this is assumed for you. Also, you cannot define a method in an interface.

An interface is thus a way of saying “you need to plug some code in here for this thing to fully work”. The interface specifies the exact signatures of the methods that must be provided. A later class implements the interface by defining those methods including their bodies. If two interfaces should happen to demand a method of the same name in a class, it isn’t a problem. It merely says that both interfaces are making the same demand for a method of that name in the class. Here’s an example implementation of the FlyingMachine interface:

Listing 2.9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20�
class Helicopter implements FlyingMachine {

 double fueltank;

 int engine_rpm;

 int rotors;

 int navigate (Point from, Point to) {

 // ...

 }

 void land () {

 for (; engine_rpm>0; engine_rpm--);

 }

 void takeOff (double fuel) {

 fueltank += fuel;

 for (; engine_rpm<6000; engine_rpm++);

 }

 void hover () {

 // ...

 }

 // other methods can be in the class too

}�
�

An interface differs from an abstract class in the following ways:

An abstract class is an incomplete class. An interface is a specification for behavior.

A class can implement several interfaces at once, whereas a class can only extend one parent class.

An interface doesn’t have any overtones of specialization that are present with inheritance. It merely says “well, we need something that does ‘foo’ and here are the ways that users should be able to call it.

Interface can be used to support call backs. This is most important and significant coding idiom. It essentially provides a pointer to a function, but in a safe way. Event handling in the java.awt.* package uses this idiom.

The Building Blocks: Packages

A package is both a directory and a library. A package is the way we group several (usually related) class files together. They are grouped together in the file system as files in the same directory. Just as java classnames must match the source file name, so too must package names match the directory name.

Package names (which match directory names), classnames (which match file names), and the CLASSPATH environment all work together to pinpoint which classes are pulled into a compilation. You need to understand all three together.

When you start to build bigger systems you will use a package statement at the top of each source file to say which package the class belongs to. The package name must match the directory name. You can also prefix it with the name of the parent directory, and so on, up the directory hierarchy (as high as you need to go to represent the structure of your system). The package name is concatenated with the class name and stored as the full name of the class.

In the example above, if our source file Helicopter.java is in a directory:

C:\home\nigel\com\stdinfo\examples

Then some choices for package name in the package statement would be:

package example;

package stdinfo.example;

package com.stdinfo.example;

and so on.

Another way to think about this, is to take the pathname to a given source file, say “C:\a\b\c\d.java”. The endmost component forces the public class in the Java file to be called “d”. For example:

public class d {

The name of the package is formed by taking the rest of the pathname, and substituting dots for the file separator character “\” (or “/” on UNIX systems). If the compilation unit above starts with a package statement it can only be one of these alternatives (in this example):

package a.b.c;

package b.c;

package c;

CLASSPATH

CLASSPATH, is an environment variable, tells the class loader all the possible starting places to begin looking for Java packages to import or to load at runtime. The look-up algorithm will do this:

Take the full name of the class we are looking for, including the package name, e.g. java.lang.Math

Replace the dot (“.”) characters with directory separator characters and suffix it with “.class”. In this example, we will get “java\lang\Math.class”.

Take that pathname from step 2, concatenate it onto each element of the CLASSPATH, and look that up in the file system. If we set the CLASSPATH like this:

set CLASSPATH=C:\sun;C:\home\nigel;D:\java\projects\;.

Here we would consecutively look for:

	C:\sun\java.lang.Math.class

	C:\home\nigel\java.lang.Math.class

	D:\java\projects\java.lang.Math.class

	. \java.lang.Math.class

Import

You never have to use the import statement. Its effect is to allow you to use a class name directly, instead of fully qualifying it with the package name. So these are your two alternatives:

Option 1�
Option 2�
�

class Pie {

 java.util.Date dateMade;

 double weight;

}�
import java.util.Date;

class Pie {

 Date dateMade;

 double weight;

}�
�

It can specify that all public files in that packages are to be imported, with a statement like this:

import java.util.*;

Zip files

Zip files were introduced in Dec. 1995 for Java classes. A zip file is a collection of .class files all grouped together in one physical file, as can be done on Windows with standard Window zip software. Jar files replaced zip files in the JDK 1.1 release. Jar files are in zip format, and can contain an extra “manifest” file listing all the files in the jar.

The standard Java and Sun libraries now come all wrapped up in one zip file called “%YOUR_JDK_HOME%\lib\classes.zip”. This blows the import model a little, in that you have to make the CLASSPATH environment variable contain the name of the actual zip file, rather than the path to it, like this:

set CLASSPATH=C:\jdk1.1.6\lib\classes.zip;.

Java Applets Basics

How Applets And Applications Are Different

In short, Java applications are standalone Java programs that can be run by using just the Java interpreter, for example, from a command line.

Java applets, however, are run from inside a Web browser. A reference to an applet is embedded in a Web page using a special HTML tag. When a reader, using a Java-enabled browser, loads a Web page with an applet in it, the browser, loads a Web page with an applet in it, the browser downloads that applet from a Web server and executes it on the local system (the one the browser is running on). (The Java interpreter is built into the browser and runs the compiled Java class file from there.)

One final significant difference between Java applets and applications – probably the biggest difference – is the set of restrictions placed on how applets can operate in the name of security:

Applets cannot read or write to the reader’s file system, which means they cannot delete files or test to see what programs you have installed on the hard drive.

Applets cannot communicate with any network server other than the one that had originally stored the applet, to prevent the applet from attacking another system from the reader’s system.

Applets cannot run any programs on the reader’s system. This includes forking a process.

Applets cannot load programs native to the local platform, including shared libraries such as DLLs.

The security restrictions imposed on applets are sometimes called “the sandbox” (as in applets are only allowed to play in the sandbox and can go no further).

Creating Applets

For the most part, all the Java programs you’ve created up to this point have been Java applications – simple programs with a single main() method that create objects, set instance variables, and run methods.

To create an applet, you create a subclass of the class Applet. The Applet class, part of the java.applet package, provides much of the behavior your applet needs to work inside a Java-enabled browser. Applets also take string advantage of Java’s Abstract Windowing Toolkit (AWT). The AWT, which is part of the java.awt package, provides classes and behavior for creating graphical user interface-based applications in Java. Applets make use of many of the capabilities in the AWT.

The initial applet class always has a signature like this:

public class myApplet extends java.applet.Applet {

	…

}

Major Applet Activities

To create a basic Java application, your class has to have one method, main(), with a specific signature. Then, when your application runs, main() is found and executed, and from main() you can set up the behavior that your program needs to run. Applets are similar but more complicated – and, in fact, applets don’t need a main() method at all. Applets have many different activities that correspond to various major events in the life cycle of the applet.

For a general overview, here are five of the most important methods in an applet’s execution: initialization, starting, stopping, destroying, and painting.

Initialization:

Initialization occurs when the applet is first loaded (or reloaded), similarly to the main() method in applications. The initialization of an applet might include reading and parsing any parameters to the applet, creating any helper objects it need, setting up an initial state, or loading images or fonts. To provide behavior for the initialization of your applet, override the init() method in your applet class:

public void init () {

	…

}

Starting:

After an applet is initialized, it is started. Starting is different from initialization because it can happen only once. Starting can also occur if the applet was previously stopped. For example, an applet is stopped if the reader follows a link to a different page, and it is started again when the reader returns to this page. To provide startup behavior for your applet, override the start() method:

public void start () {

	…

}

Functionality that you put in the start() method might include creating and starting up a thread to control the applet, sending the appropriate message to helper objects, or in some way telling the applet to begin running.

Stopping

Stopping and starting go hand in hand. Stopping occurs when the reader leaves the page that contains a currently running applet, or you can stop the applet yourself by calling stop(). By default, when the reader leaves a page, any threads the applet had started will continue running. By overriding stop(), you can suspend execution of these execution of these threads and then restart them if the applet is viewed again:

public void stop () {

	…

}

Destroying

Destroying enables the applet to clean up after itself just before it is freed or the browser exits – for example, to stop and remove any running threads, close any open network connections, or release any other running objects. Generally, you won’t want to override destroy() unless you have specific resources that need to be released – for example, threads that applet has created. To provide clean-up behavior for your applet, override the destroy() method:

public void destroy () {

	…

}

How is destroy() different from finalize(), which was described earlier. First, destroy() applies only to applets. finalize() is a more general-purpose way for a single object of any type to clean up after itself.

Painting:

Painting is how an applet actually draws something on the screen, be it text, a line, a colored background, or an image. Painting can occur many thousands of times during an applet’s life cycle (for example, after the applet is initialized, if the browser is placed behind another window on the screen and then brought up again, if the browser window is moved to a different position on the screen, or perhaps repeatedly in the case of animation). You override the paint() method if your applet needs to have an actual appearance on the screen (that is, most of the time). The paint()method looks like this:

public void paint (Graphics g) {

	…

}

Note that unlike the other major methods in this section, paint()takes an argument, an instance of the class Graphics. This object is created and passed to paint()by the browser, so you don’t have to worry about it.

Listing 2.10 – HelloAgainApplet.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14�
import java.awt.Graphics;

import java.awt.Font;

import java.awt.Color;

public class HelloAgainApplet extends java.applet.Applet {

 Font f = new Font("TimesRoman",Font.BOLD,36);

 public void paint(Graphics g) {

 g.setFont(f);

 g.setColor(Color.red);

 g.drawString("Hello again!", 5, 40);

 }

}�
�

This applet implements the paint() method, one of the major methods described earlier. Because the applet doesn’t actually do much, and there’s not really anything to initialize, you don’t need a start(), stop(), init() or destroy() method.

Including An Applet On A Web Page

After you create a class or classes that contains your applet and compile them into class files as you would any other Java program, you have to create a Web page that will hold that applet by using the HTML language. There is a special HTML tag for including applets in Web pages; Java-enabled browsers use the information contained in that tag to locate the compiled class files and execute the applet itself.

To include an applet on a Web page, use the <APPLET> tag. <APPLET> is a special extension to HTML for including applets in Web pages.

Listing 2.11 – HelloAgainApplet.htm

1

2

3

4

5

6

7

8

9

10

11

12

13�
<HTML>

<HEAD>

<TITLE>This page has an applet on it</TITLE>

</HEAD>

<BODY>

<H2>Session 2: Hello Again</H2>

<P>My Java applet says:

<APPLET CODE="HelloAgainApplet.class" WIDTH=200 HEIGHT=50>

Hello Again!

</APPLET><P>

The Source

</BODY>

</HTML>�
�

There are three things to note about in the <APPLET> tag:

The CODE attribute indicates the name of the class file that contains this applet. In this case, the class file must be in the same directory as this HTML file. To indicate applets are in a specific directory, use CODEBASE, described later in this chapter.

WIDTH and HEIGHT are required and are used to indicate the bounding box of the applet – that is, how big a box to draw for the applet on the Web page.

The text between the <APPLET> and </APPLET> tags is displayed by browsers that are not Java-enabled. Because your page may be viewed in many different kinds of browsers, it is a very good idea to include some sort of alternate text or HTML tags here so that readers of your page who don’t have Java will see something other than a blank line.

You can see your applet by using a Java-enabled browser like Netscape or I.E. 3.0 or use the appletviewer, which is a part of the JDK:

C:\> appletviewer HelloAgainApplet.html

Passing Parameters To Applets

With Java applications, you pass parameters to your main() routine by using arguments on the command line.

Applet parameters come in two parts: a parameter name, which is simply a name you pick, and a value, which is the actual value of that particular parameter. So, for example, you can indicate the color of text in an applet by using a parameter with the name color and the value red.

In the HTML file that contains the embedded applet, you indicate each parameter using the <PARAM> tag, which has two attributes for the name and the value, called NAME and VALUE. The <PARAM> tag goes inside the opening and closing <APPLET> tags:

<APPLET CODE=”MyApplet.class” WIDTH=100 HEIGHT=100>

<PARAM NAME=font VALUE=”TimesRoman”>

<PARAM NAME=size VLAUE=”36”>

</APPLET>

This particular example defines two parameters to the MyApplet applet; one whose name is font and whose value is TimesRoman, and on whose name is size and whose value is 36.

Parameters are passed to your applet when it is loaded. In the init() method for your applet, you can then get hold of those parameters by using the getParameter() method. getParameter() takes one argument – a string representing the name of the parameter you’re looking for – and returns a string containing the corresponding value of that parameter. To get the value of the font parameter from the HTML file, you might have a line such as this in your init() method:

String theFontName = getParameter (“font”);

If a parameter you expect has not been specified in the HTML file, getParameter() returns null. Most often, you will want to test for a null parameter in your Java code and supply a reasonable default:

if (theFontName == null)

	theFontName = “Courier”;

Keep in mind that getParameter() returns string – if you want a parameter to be some other object or type, you have to convert it yourself. To parse the size parameter from that same HTML file and assign it to an integer variable called theSize, you might use the following code:

int theSize;

String s = getParameter (“size”);

if (s == null)

	theSize = 12;

else

	theSize = Integer.parseInt (s);

Listing 2.12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23�
 import java.awt.Graphics;

 import java.awt.Font;

 import java.awt.Color;

 public class MoreHelloApplet extends java.applet.Applet {

 Font f = new Font("TimesRoman", Font.BOLD, 36);

 String name;

 public void init() {

 name = getParameter("name");

 if (name == null)

 name = "Peter";

 name = "Hello " + name + "!";

 }

 public void paint(Graphics g) {

 g.setFont(f);

 g.setColor(Color.red);

 g.drawString(name, 5, 40);

 }

}�
�

Listing 2.13 MoreHelloApplet.htm

1

2

3

4

5

6

7

8

9

10

11

12

13

14�
<HTML>

 <HEAD>

 <TITLE>Hello!</TITLE>

 </HEAD>

 <BODY>

<H2>More Hello (Micheal)</H2>

 <P>

 <APPLET CODE="MoreHelloApplet.class" WIDTH=200 HEIGHT=50>

 <PARAM NAME=name VALUE="Micheal">

 Hello to whoever you are!

</APPLET><P>

The Source

</BODY>

</HTML>�
�

Homework #2

Describe overriding, and overloading, and write some code to show examples.

Consider the following three related classes:

class Mammal { }

class Dog extends Mammal { }

class Cat extends Mammal { }

There are these variables of each class:

Mammal m;

Dog d = new Dog ();

Cat c = new Cat ();

Which of these statements will cause an error at compile time, and why?

Which of these statements may cause an error at run time and why?

Given this class definition

class RailRoad {

 String name;

 RailRoad () {

 System.out.println ("I've been working on the railroad!");

 }

 RailRoad (String name) {

 this.name = name;

 }

}

How could you adjust the second constructor (the one that takes the String) most efficiently so that it also displays the message I’ve been working on the railroad when it is invoked?

�PAGE �1�

